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Abstract

We study the fundamentals of time complexity in computational com-
plexity theory. We discuss polynomial time and nondeterministic polyno-
mial time. We consider NP-complete problems, the hardest problems in
NP, which hold importance in the work on the P vs. NP problem.

1 Introduction

In a world where technology is growing by leaps and bounds, the theory of
computation is increasingly critical to our understanding of the limits of com-
puters. This paper serves as an introduction to computational complexity the-
ory, specifically within the realms of time complexity. This paper will focus on
NP-completeness, which holds both theoretical and practical significance—NP-
completeness plays a role in the study of the infamous P versus NP problem,
which essentially asks if any problem whose solution can be verified in polyno-
mial time can also be decided in polynomial time, as well as in the search for
algorithms that can solve real-life problems in a reasonable amount of time.

First, we will introduce the topic by discussing time complexity, especially in
regards to Turing machines. Next, we will define polynomial time, giving simple
examples along the way, before moving on to introducing non-deterministic poly-
nomial time. Finally, we will discuss the heart of the paper, NP-completeness,
and close with a proof of the Cook-Levin Theorem.

2 Time Complexity

Even when a problem can theoretically be solved, considerations of the time
and space required to solve a problem can determine if it is solvable in practice.
Time complexity serves to measure the time it takes to solve a computational
problem.

We can measure time complexity by analyzing Turing machines, models
of computation. The Church-Turing thesis tells us that Turing machines are
equivalent to our intuitive notion of algorithms. We will first define a Turing
machine and its important components.
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Definition 2.1. A Turing machine (TM) is an idealized computer used to
simulate an algorithm. A TM has a tape, a tape head, and a finite control as
shown below.

finite control

head

tape

a b a ⊔ ⊔ . . .

The tape, which is infinite and has unlimited memory, initially contains the
input string which can later be modified. The tape can also contain the blank
symbol ⊔ to represent an empty cell.

The head is used to read and write symbols and is able to move left and
right.

The finite control tells the tape head where to go, performs calculations
using a finite set of states, and outputs “accept” or “reject” when the designated
accepting and rejecting states are entered.

Definition 2.2. The configuration of a TM is the setting of the current state,
head location, and contents of the tape.

Definition 2.3. A TM is deterministic when the current configuration deter-
mines the next configuration.

Definition 2.4. A nondeterministic TM (NTM) has the additional ability of
“guessing,” such that there are multiple possibilities for the next configuration
on different “branches” of the machine’s computation. A NTM accepts if and
only if at least one of its branches accepts.

Definition 2.5. A TM recognizes a language if the TM accepts when the input
string is in the language and rejects or loops otherwise.

When a machine loops, it can be confused with a machine that is just taking
a long time to accept, as it never halts - it never enters a qaccept or qreject state.
For efficiency purposes, TMs that halt on all inputs are preferable as they will
never loop.

Definition 2.6. A TM decides a language if it recognizes the language and
either accepts or rejects (never loops) on each input.

Example 2.1. We describe a TM M that recognizes A = {0k1k|k ≥ 0} as
follows:

M = “On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1.

2. Repeat step 3 if both 0s and 1s remain on the tape.

3. Scan across the tape, crossing off a single 0 and a single 1.
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4. If 0s still remain after all the 1s have been crossed off or if 1s still remain
after all of the 0s are crossed off, reject. Otherwise, if no 0s or 1s remain
on the tape, accept.”

Step 1 checks whether or not the input string is in the format where the
0s are in front of 1s. If a 0 is between two 1s or if a 1 is between two 0s, this
obviously does not satisfy the format of language A, so M rejects.

Looking at language A, we can also observe that the number of 0s is equal
to the number of 1s. Repeating Step 3 allows us to see whether or not there
is an equal number of 0s and 1s. Step 4 checks this new modified tape. When
there is not an equal number of 0s and 1s, then the resulting tape will either
have some remaining 0s or some remaining 1s and the TM will reject. When
there is an equal number of 0s and 1s, the resulting tape will have all of its 0s
and 1s crossed out and the TM will accept.

Definition 2.7. Suppose that a halting deterministic TM uses at most f(n)
steps on any input of length n. We call f(n) the running time or time complexity
of our TM.

Since the exact computation of running time is complex, time complexity
is often estimated using the order of the expression for running time. One
way to express this estimation is through big-O notation, which estimates the
time complexity expression by taking the highest order term and ignoring its
coefficient.

Definition 2.8. Let f and g be functions that take in natural numbers and
output nonegative real numbers. Then f(n) is O(g(n)) if for positive constants
c and n0 where integer n ≥ n0,

f(n) ≤ c · g(n).

Example 2.2. Let f1(n) = 8n2 + 3n + 9 be the time complexity of M2. The
highest order term is 8n2, and we ignore its coefficient of 8, so f1(n) = O(n2).

Definition 2.9. Many machines have time complexities in the form of O(nc)
where c is greater than or equal to 0. This time complexity is referred to as
polynomial.

Definition 2.10. Many other machines have time complexities in the form of
2O(n). This time complexity is referred to as exponential.

Example 2.3. Let f2(n) = 2n be the time complexity of M3. Since this is an
exponential function, the time complexity will be exponential, not polynomial.

Example 2.4. For TM M that recognizes the language A = {0k1k|k ≥ 0}, we
can find its running time by analyzing the time for each step of M .

We call n the length of our input. On step 1, M scans the whole tape which
uses n steps, then the head moves back to the left end, which takes another n
steps, taking a total of 2n or O(n) steps. On step 2 and 3, M will use O(n2)
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as it will scan the tape (taking n steps) a maximum of n/2 times (crossing off
2 symbols each time). On step 4, M performs another scan, which takes O(n).
Therefore, the total running time is O(n) +O(n2) +O(n) = O(n2).

Definition 2.11. Let t(n) be a function which takes the natural numbers and
outputs nonnegative real numbers. The time complexity class TIME(t(n)) is
the collection of languages that are decidable by an O(t(n)) TM.

Example 2.5. A = {0k1k|k ≥ 0} is in TIME(n2) since M decides A in O(n2).

3 Polynomial Time

In the section above, we learned about time complexities that are polynomial
and exponential. Polynomial time (P) computer algorithms are considered faster
than exponential time algorithms.

Definition 3.1. P is the class of languages that are decidable in polynomial
time on a deterministic single-tape TM. The mathematical notation of P is

P =
⋃
k

TIME(nk).

Polynomial time such as n2 grows significantly slower than exponential time
such as 2n. When n = 10000, n2 will be equal to 100 million, a large but
manageable number, while 2n will be a number much greater than the total
number of atoms in the universe.

Broadly speaking, because polynomial time algorithms are more reasonable
to compute than exponential time algorithms, P algorithms are more useful com-
putational models for practical use. But only using polynomial time algorithms
will not provide a solution to every problem. This will be further explored in
the following section.

An example of a language that is in P is PATH. The PATH problem
determines whether or not a directed graph G that contains two nodes s and t
has a directed path that connects s to t.

PATH = {⟨G, s, t⟩ |G is a directed graph that has a directed path from s to t}.

Note that ⟨G, s, t⟩ denotes an encoding of the information G, s, t into some
string.

Theorem 3.1. PATH ∈ P.

Proof. Let’s first write the algorithm M for PATH.

M = “On input ⟨G, s, t⟩ where G is a directed graph with nodes s and t

1. Place a mark on node s.

2. Repeat the next step until no additional nodes are marked:
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3. Scan all of the edges of G. If there is an edge (x, y) where x is a
marked node and y is an unmarked node, mark node y.

4. If t is marked, accept. Otherwise reject.”

We can check that this algorithm works correctly because if there is a path from
s to t, M is guaranteed to accept because when following the steps, node t will
always be marked at the end. If there is no path from s to t, M is guaranteed
to reject because t will never be marked.

Analyzing this algorithm, we can also show that PATH runs in polynomial
time. The first and fourth steps are executed once. When the maximum length
of a potential path in G is set to n, then step 3 is executed at most n times.
Thus, adding the steps together, we get 1 + 1 + n which means M runs in
polynomial time. Therefore, M is a polynomial time algorithm for PATH.

4 Non-Deterministic Polynomial Time

As mentioned in the previous section, polynomial time algorithms are able to
provide solutions to problems in a reasonable time complexity. However, for
many useful problems, we have not been able to find a polynomial time al-
gorithm. To solve these problems, we introduce the time complexity class
non-deterministic polynomial time (NP). Interestingly, researchers have been
unable to prove the existence of any NP languages that are in P. This question
of whether P equals NP still is one of the most well-known unsolved questions
in mathematics and computer science.

Some problems where a polynomial time solution is unknown have a feature
called polynomial verifiability that is important for understanding their com-
plexity. We do not know of a fast/polynomial time solution, but, if given a
proposed possible solution, we can quickly verify that solution.

Definition 4.1. A verifier for a language A is an algorithm N , where

A = {w|N accepts ⟨w, c⟩ for some string c}.

We measure the time of a verifier in terms of length w. This means that a
polynomial time verifier runs in polynomial time. A language A is a polynomially
verifiable if it has a polynomial time verifier. Here, c represents proof or a
certificate of membership in A.

Another way to view a verifier is in terms of a NTM. A NTM’s ability to
guess can be thought of as the ability to generate a candidate certificate of
membership.

We can define the nondeterministic time complexity class NTIME(t(n))
based on the deterministic time complexity class TIME(t(n)).

Definition 4.2. NTIME(t(n)) = {L|L is a language decided by an O(t(n))
time nondeterministic TM}.
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Definition 4.3. NP is the class of languages that have polynomial time veri-
fiers. The mathematical notation of NP is

NP =
⋃
k

NTIME(nk).

We now prove that the NTM definition of NP is equivalent to the earlier
definition of polynomial verifiablity.

Theorem 4.1. A language is in NP if and only if it is polynomially verifiable.

Proof. We prove this theorem in two parts. First, we have to convert a poly-
nomial time verifier to an equivalent polynomial time NTM. Then we have to
convert a polynomial time NTM to an equivalent polynomial time verifier. The
NTM simulates the verifier by guessing the certificate while the verifier simulates
the NTM by using the accepting branch as the certificate.

For the first step, let’s assume that there exists V , a TM that runs in time
nk and verifies A. We can construct a polynomial time NTM N that decides A
as follows.

N = “On input w of length n:

1. Nondeterministically select string c of length at most nk.

2. Run V on input ⟨w, c⟩.

3. If V accepts, accept. Otherwise reject.

To prove the other direction of the theorem, we assume that A is decided by
a polynomial time NTM N . We can construct a polynomial time verifier V as
follows.

V = “On input ⟨w, c⟩ where w and c are strings:

1. Simulate N on input w, treating each symbol of c as a description of the
nondeterministic choice to make at each step.

2. If this branch of N ’s computation accepts, accept. Otherwise reject.

Using Theorem 4.1, we can approach proving problems to be in NP in two
different ways. The first way is finding the certificate of the problem. The
second way is finding the nondeterministic polynomial time steps in the Turing
machine.

An example of a NP problem is HAMPATH. The HAMPATH problem
determines whether in a directed graph G, there is a directed path from node s
to node t that goes through each node exactly once.

HAMPATH = {⟨G, s, t⟩ |G is a directed graph with a Hamiltonian path from s to t}.
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Example 4.1. HAMPATH ∈ NP.
We can write a NTM M that decides HAMPATH as follows:

M = “On input ⟨G, s, t⟩ where G is a directed graph with nodes s and t:

1. Nondeterministically guess a list of n nodes, a1, ..., an where n is the num-
ber of nodes in G.

2. Check for repetitions in the list. If any repetitions are found, reject.

3. Check whether s = a1 and t = an. If either fail, reject.

4. For each i between 1 and n− 1, check whether (ai, ai+1) is an edge of G.
If any are not, reject. Otherwise, accept.

We can see that when there is a Hamiltonian path from s to t, then M is
guaranteed to accept because no nodes are gone through more than once. If
there is not a Hamiltonian path from s to t, then M is guaranteed to reject
because there will be overlapping nodes.

Let’s also check that this algorithm runs in nondeterministic polynomial
time. Step 1 is a nondeterministic selection which obviously runs in polynomial
time. Step 2 and 3 are both quick checks which that can be run in polynomial
time. Step 4 also clearly runs in polynomial time since only n − 1 checks are
performed. Therefore this algorithm runs in NP time.

5 NP-Completeness

NP-complete problems are problems in NP whose complexity is linked to the
complexity of all problems in NP. So, finding any algorithm in P that solves an
NP-complete problem would mean that all problems in NP can be solved in P ,
proving P = NP .

Definition 5.1. Language A is polynomial time reducible to language L , de-
noted A ≤p L , if there exists a polynomial time computable function f such
that for any input w,

w ∈ A ⇔ f(w) ∈ L.

Reducibility allows us to determine whether or not a language is in P by
checking if this language is polynomial time reducible to a language already
known to be in P . The theorem below shows this idea.

Theorem 5.1. If A ≤p B and B ∈ P, then A ∈ P.

Proof. Let M be the polynomial time algorithm that decides B and let f be
the polynomial time reduction from A to B. We construct a polynomial time
algorithm N deciding A:

N = “On input w:
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1. Compute f(w)

2. Run M on input f(w) and output whatever M outputs.”

Since A ≤p B and f is a reduction from A and B, we have w ∈ A whenever
f(w) ∈ B. This also means that M accepts f(w) whenever w ∈ A. In addition,
N runs in polynomial time because the two steps both run in polynomial time.

Definition 5.2. Language L is NP-complete if

1. L ∈ NP

2. For every A ∈ NP, A ≤p L.

A problem is NP-hard when it satisfies the second condition of the definition.
To set up our first NP-complete problem, we will start with a few definitions.

Definition 5.3. A Boolean formula ϕ is an expression of Boolean variables,
True (1) or False (0) values, and Boolean operations, AND(∧), OR(∨), and
NOT(¬), which manipulate Boolean variables.

Definition 5.4. ϕ is satisfiable if ϕ is True for some assignment of 0s and 1s
to its variables.

Example 5.1. Let ϕ = x ∧ (y ∨ z). The assignment x = 1, y = 1, z = 1 makes
ϕ evaluate to 1, so ϕ is satisfiable.

Example 5.2. The satisfiability problem tests if a Boolean formula ϕ is satis-
fiable. We will abbreviate this problem to SAT .

SAT = {⟨ϕ⟩ |ϕ is a satisfiable Boolean formula}.

To prove some language L is NP-complete, we show L ∈ NP and A ≤p L
where A is known to be NP-complete. By proving that SAT is NP-complete,
we can use SAT as our language A to solve other NP-complete problems.

Theorem 5.2 (Cook-Levin Theorem). SAT is NP-complete.

Proof. In order to prove that SAT is NP-complete, we have to prove that SAT
satisfies 2 conditions:

1. SAT ∈ NP

2. For every A ∈ NP, A ≤p SAT .

Since a nondeterministic TM can guess an assignment to ϕ and accept if it
satisfies ϕ, SAT is in NP .
Next, we show that every language A in NP is polynomial time reducible to
SAT . Let N be the NTM that decides A in nk time. We need to construct ϕ
that is satisfiable iff N accepts w.
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We proceed by using a tableau, as shown in the figure below. A tableau for
NTM N on input w lists the configurations of a branch of computation. Each
row of our nk by nk tableau represents a configuration of N on w, where the
first row is the first configuration, the second row is the second configuration,
and so on, where the last row is the nkth configuration. Our tableau accepts
if any row is an accepting configuration. N accepting w is equivalent to our
tableau accepting. We show that there is an accepting tableau for N on w iff ϕ
is satisfiable.

q0 w1 w2 . . . wn ⊔ ⊔ . . . ⊔ ⊔

nk

nk

Each cell of our tableau is called cell[i, j], where i is the row and j is the column.
We say that xi,j,s is True if and only if cell[i, j] holds symbol s.
We know that 1 ≤ i, j ≤ nk and s, t are in the set made up of N ’s tape alphabet
and state set. Note that

∧
and

∨
represent iterated AND and OR expressions

respectively.
In order to make our tableau correspond to ϕ, we say that

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept.

Since at least 1 variable s for each cell is True, and xi,j,s and xi,j,t cannot
both be true, we say that

ϕcell =
∧
i,j

[(∨
s

xi,j,s

)
∧
( ∧

s,t
s ̸=t

(
xi,j,s ∨ xi,j,t

))]
.

Then, we express the locations and symbols for the start configuration in the
first row:

ϕstart = x1,1,q0 ∧ x1,2,w1
∧ x1,3,w2

∧ x1,4,w3
∧ . . .

We also require that the accept state qaccept is on at least 1 of the cells, so

ϕaccept =
∨
i,j

xi,j,qaccept .

To express ϕmove, we first need need to ensure that configurations following past
configurations are legal moves. A 2 by 3 window of cells is legal if it follows the
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transition functions of N . The (i, j)-window means the rows of the window are
i, i+ 1 and the columns of the window are j − 1, j, j + 1. So, cell[i, j] is in the
upper middle position (holding b).

a b c
d e f

To construct ϕmove, all windows in the tableau have to be legal, with each of
the 6 cells yielding a legal window. So, we can say that

ϕmove =
∧
i,j

[ ∨
a,b,c,d,e,f

is a legal window

(
xi,j−1,a ∧ xi,j,b ∧ xi,j+1,c ∧ · · · ∧ xi+1,j+1,f

)]
.

Now we have our ϕ, we have to show that its size is polynomial. We note that
our nk by nk tableau has n2k cells, and each cell has some number of variables
depending on the number of possible symbols. Since the number of symbols
does not depend on the input n, the total number of variables is O(n2k).

ϕcell, ϕmove, ϕaccept involve each cell of the tableau, so they each have size
O(n2k). ϕstart only involves the cells in first row of the tableau, so it has size
O(nk). So, ϕ has size O(n2k), meaning it is polynomial.

Therefore, our tableau can be reduced in polynomial time to produce ϕ, so
A is polynomial time reducible to SAT and thus SAT is NP-complete.

From the Cook-Levin Theorem and Theorem 5.1, we can reach the following
corollary.

Corollary 5.1. SAT ∈ P if and only if P = NP.
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